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PREFACE AND SUMMARY

A previous Memorandum, RM-5407-PR, introduced and analyzed a
simple multitype population model. That model was special insofar
as the input process was assumed Poisson, This Memorandum analyzes
a modified model that has for its input process an arbitrary renewal
process. This modification allows far greater flexibility in fitting
the model to some real situation than does the case of Poisson inputs.

S. C. Port is a consultant to The RAND Corporation.
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A MULTITYPE STOCHASTIC POPULATION MODEL: AN EXTENCED VERSION

1. INTRODUCTION

A previous Memorandum* introduced a multitype stochastic population
model, motivated it with examples, and analyzed some of its mathematical
consequences. The purpose here is to do the same with a modified model
that includes the original one as a special case. This new model is the
same as the previous one except that the input process is an arbitrary
renewal process instead of a Poisson process. This allows far greater
flexibility in fitting the model to a real situation.

The new model is as follows. A particle may be in one of r different
states. Particles enter the system in bunches that arrive according to
a renewal process T(t) having waiting time {wi}, which possesses a density
and finite variance. The total number of particles in the i-th bunch is
X,. The processes T|(t) and fxi} are independent. The composition of the

i

i-th bunch is {x X, V; where conditional on X,, the r-vector

i1’ "t Tdr i

¢ .

X1 e xir} is multinomial (X,; @;, ..., &). After arrival into the
system the particles all act independently of each other and transform
their states according to a semi-Markov process having transition law

(t) and final probabilities, lim Pi (t) =7 We will also assume that

te 1

Pij I

o«
{ |P”(:) - nj| dt < ® .

As before, let Mj(t) and Yj(t) denote, respectively, the number of

particles that enter the system in state j by time t and the number of
particles in state j at time t.

For )1 and Xz negative, set

A, M () ALY ()
E[-elj 92j ]-¢t(\ln \2)!

*
Sidney Port, A Multitype Stochastic Population Model, The RAND
Corporation, RM-5407-PR, September 1967.




and for o <8 <1, set
X

E(s i) = G(s),

and get p(t) = o P (0], o[l - Pyy(6)] = py(t) and py(t) = 123 Py (0

Then all of the information about the Y (t), M,(t) follows from the

3 B
following integral equation that the ét(ll, Xz) satisfy:

(1.1 4,0, %) =B(W, >0) + It c[1 + (ex1+k2 - l)pl(t - s)
[o}

A

+ (e b 1)1’2(t - s)
‘(e

This equation may be derived by the usual renewal type argument

2 1)p3(t - a)] 3, (0 K AR(H) < ).

and is left to the reader. We note that if the W, are exponentially

distributed with mean 1/u, then the equation becomes
2O,y =e B 4 gt‘E(s 3 M ds |
tt 1 2 L o o ) s o

and direct substitution shows that

t
(1.2) HQO, ) - expl [o (&(s) - 11 ds} )
Here
A \ \

C(s) = Grl + (e 2

- l)pz(s) + (e

Setting ll = 191, \2 - 192 in (1.2) and comparing with Eq. (2.3) of

2. l)pl(l) + (e.l - 1>p3(8)] )

RM-5407-PR, we see that these are the same, Thus in the case of Poisson

arrival, the integral Eq. (1l.1) becomes the basic equation of RM-5407-PR,
We will state and prove our general results for processes in

continuous time. Naturally, analogous results hold in discrete time.

Unfortunately, one cannot solve Eq. (1.1) in the general case. However,




-we can use it to derive the behavior of the moments of Y (t) and M

b

Only the first two moments will be of interest to us. Set Hy = EX
1

5O

19

by = EXI(X1 - 1), v= (Ewl)' . Under our assumptions, ET|(t) - ty —- 1 =

2.2
(var W, o= (EW) v Iy, t — .

Theorem 1. Under the assumptions of the model [Mj(t)/t, Yj(t)/t]
converegrc in prahability to ('y&jyl, ‘Wlf'j,. Mureover,
(1.2) EYj(t) = Yulﬂjt + ul(YJ + nd) + o(l) ,
where

.
J -J. [Z ayPy () - nj] dt,
o “i=l
(1.4) Var Y (t) = quzvnzl + 4 ﬂzv + 1. Y7, 7t + o(t),
] 17 (2) 4 1]
(1.5) EMj(t) = Yulojt + ulajl + o(1),
and
(1.6) Var M, (t) = [Zuzazyl +u aZY + oo v]e 4 o(u)
] 1%} (2)%57 7 %1% '

Theorem 2. Under the assumption of the model,

2
Cov [Mj(t), Yj(t)] = [2u1yr,jnj1 + (“(2) + ul)ajnj\/]t + o(b).

Let us now compare our general results with those for the special
case when wl is exponential; i.e., T(t) is Poisson with the same
parameter values. Then the first term in expansion of the means 1s
the same and the second term differs by the factor involving 1. Like-
wise, in the asymptotic expansion of the variance, we see that there

is an additional term involving I.




-l

The exponerrial waitir - time !s a special case of the gamma. If

W. has the gamma density,

1
v-1 -ox
ffylu(x)-\"_%ﬁx ¢ o >0, V>0,
then
] 2 - ugu + 12
B = B9 7 ,
o
and thus
V) + 1 u2 v - uz u(l - v
I- v _2—— -—g_._—)- .
2 2 2 2
o o o o

Thus I >0 if u< 1, I =0, vu=1,and I< o if v > 1, The case v =1
is the exponential distribution.

An interesting special case occurs when the arrival times are con-
stant. Here it is better to formulate the model in discrete time, and
it is convenient to take one time unit as the time between successive
group arrivals. Then {f Y ,(n) is the number of particles in state j

3

at time n, we see that

Yj(n) = an + ... + xnn ’

where Xn1 denotes the number of particles in state j at time n which

arrive at time 1. Thus
18Y ,(n) n iex .
Ele J = " gle ™].
i=]
Now

r
n-1
Exnj “1 gakpkj -ulnj + o(l) ,




~5-
and
r 2 r r
_ n-i . n-i ) n-i)
Var Xni = (Var )(1)(,'(51 SR ) + (u1)<k2=1 Qkij )(1 § akij

2
= V .
u(z)ﬂj + ul 5 + o(1l)

We therefore see that

2
var Yj(n) = nf (Var XI)Wj + ulﬂj(l - Hj)] + o(n).

Thus , computing the characteristic function, we have

n e2 Var Xni 1
E exp[le(Yj(n) - EYj(n)%Var Yj(n) = izl 1 - = m + 0(;)
2 n 2
=[:1 - % + o(é)] -8 /2-

Theorem 3. For the case of constant group arrivals the number

Hence we have established the following.

of partials Yj(n) in state j at time n normalized by its mean and

variance is asymptotically normally distributed.




2, PROOF OF THEOREM 1

We first consider Y _(t). Setting 11 = o0 in (l.1) and setting
Y (1) X
E(u J l =& (»), we see that
[ » t
t 2 _$
ét(\) =1 - F(t) + Y G{l + (e - 1) p(t - s) @t_s(k) dF(s),
A _
where
r
p(t) = p,(t) + p,(t) = :E: a P (L),
1 3 i1 1°1j

and F(t) = P(w1 < t). A differentiation on )\ yields

t

i A
(2.1) ep =1 G'(..oe'p(t - 68, dF(s) + I G(...)%

tes dF(s).
o] (o]

Let B = EXl and My = EXI(X1 - 1), Setting X = o in (2.1) yields
t t

(2.2) EY,(6) =4 f p(t - 8) dF(s) + I EY (¢ - 5) dF(s).
[ (o]

This integral equation is readily solvable by Laplace transforms. We
will illustrate the technique here and henceforth leave such details
to the reader. Denote Laplace transforms by * and let the argument of the

transform function be A. Then (2.2) yields

-~ - a o~ ~
EY, = u pF + EY.F .

) b
Hence
A AN
-y PE_
EYyswmr-F -
Thus
- t
(2.3) EY (t)*p, ZV p(t -s)P(wl+...+Wneds)
i j=1 “o
r\t
=4y, ' p(t - s) dN(s),
1 Jo




where here and in the following N(t) = ET(t) is the renewal function.
Under our assumptions on the waiting timcs it is known that

t
N(t) = Io n(s) ds, where n(s) is the renewal density, and that

jo ln(s) - 176w | ds < @ .
Also
L) Ewi - 2(5”1)2 Var W, - (Ewl)2
1= F Mn(s) - 1/Ew1] ds = 5 - - )
° (Ew)) 2(EW, )

Set vy = (Ewl)-l. From (2.3) we see that
t
EYj(t) - tulvﬂj =y fo {p(t - s)n(s) - Yﬂj] ds
t
= u, IO [p(t - s) - Hj]n(s) ds

t
+ ulﬂj IO [n(s) - v ds.

Now
t
ulﬂj f (n(s) - Y] = ulﬂjl + o(1), t =,
"o
Also
t t
[ Tece - 8) - Mnes) s = | Tp(e - ) - M nGs) - ¥1 ds
“o ‘o b]

t
+ v f [p(s) - HJW ds,
Q

The first integral on the right is clearly o(l) a8 t + =, and the

second is VvJ + o(l), where

L]
J = jo (p(8) - an ds.




Hence
t
u | oIete -8y - M Incs) ds = u I+ o(1).
(o]
Thus
(2.4) EYj(t) - tulvnj = ule + plﬂjl + o(1).

We must now analyze the second moment EY (t)z. Differentiating

3

(2.1) on \ and setting X\ = o yields the equation

2 ot
EYj(t) = 2 Jo plp(t - s)EYj
At t 2
* oy j p(t - s) dF(s) + [ EYj(t - 5) dF(s) -
[o]

o

o

t
(t - s8) dF(s) + By f p (t - s) dF(s)
o

Solving, we find that

t
(2.5) EY?(t) = 2, j p(t - s)EY (t - s)n(s) ds
o

J
t
+ Hy [ pz(t - s)n(s) ds + EY
‘o

j(t)-

To establish our results we make good use of the following.

Lemma 2,1. Let a(t) and b(t) be nonnegative functions such that

]
a(t) - a, b(t) - b are in L (o, ®), and set J = f fa(t) - a] dt,
[0}
Jb = [0 [b(t) - b dt. Suppose M(t) =2 o, M(t) t @, t - @, and

M(t) - tMO - J t - ®, Then

M,
abM t2

t
(2.6) I b(t - s)M(t - s)a(s) ds - == °2°
(o]

= b
a oJMt + MoboJat + o(t).




Proof. We can write
rt abM t2

(2.7) e b(t - s)M(t - s)a(s) ds _.41{%11_

t
= f b(t - s)[M(t - s) - (t - s)MOTa(S) ds
o

t Mab t2

+M [ (t - s)a(s)b(t - s) ds - =22
‘o

] [}

Now
b(t)[M(t) - tMo] ~ by, t-w, a(t) ~a, t -= .
Thus

t
(2.8) JO b(t - s)[M(t - s) - (t - s)MOWa(s) ds ~‘a°boJMt, t - o,
On the other hand,

t t
(2.9) M jo (t - s)a(s)b(t - 5) ds = M_ [o sb(s)a(t - s) ds

t
-m J'o sbe)la(t - &) - a_]

rt Moaob t
+ Moao ! s(b(s) - bo + 2
o
Now integrating by parts we find that
t t
(2.10) I s[b(s) - b )ds =t [ [b(s) -b7ads
o ‘o °
t s
- r ds r [b(x) - b 7] dx
JO .0 [o]

- tJb - tJb + o(t) = o(t).




- ——— e,
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Also

t t
f sb(s)[a(t - s) - ao] ds = I s(b(s) - bowra(t - 8) - aOW

‘o o

t
+b_ Io sfa(t - s) - aOW .

The first term on the right is clearly o(t), and the second term is

t t
b, Jo sla(t - s) - ao] ds = bo Io (t - s)[a(s) - ao] ds

t t
= tbo Xo [a(s) - aoT - bo Eo sfa(s) - ao] ds = tboJa + o(t).

Thus

t
(2.11) I sb(s)fa(t - s) - a ] ds = tb J_+o(t).
[¢]

Substituting (2.10) and (2.11) into (2.9) yields

t Moaobot2
(2.12) M_ 7[0 (t - 8)a(s)b(t - 5) ds = ——

+Mb Jt+o(t) .

Using this and (2.8), we find from (2.7) that (2.6) holds.

2
3

(t), and a(t) = n(t) in the lemma and using (2.4) we find that

We may now proceed to analyze EY[(t). Taking b{t) = p(t),

M(t) = EYj
t
2“1 jo p(t - s)EYj(t - 8)n(s) ds

2.2
Yyl u
- i1 2 2 }
Zul{ 7 t” + yﬂj(uIYJ + ulnd)t + plyﬂjlt + o(t) .

From (2.5) we then find that

2 2.2
EYj(t) T n

22 22
jt + LZulyﬂj(ulw + ulnjl) + ZulYnJI]t

+ (uznﬁy + plvﬂj)t + o(t).

- . . ..

P ety b gy s
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On the other hand ,

2
[EYj(t)] = [EYj(t) - u]\/ﬂjt][EYu(t) - ulvﬂjﬂ

2222
+ 2ty7 EY. (t) - Vel +t n
Y 3“1[ j( ) - Wy ; ] U

- y2n. 2.2 \ ; !
= ulujv t° 4+ Zzﬂjul[ple + “1”j1 t + o(t),
Thus
2 2
(2.13) Var Yj(t) = EYj(t) - [EYj(t)]
en 2.2 2
= [Zulvnjl + uznjv + ulynj]t + o(t),

Turning our attention now to M, (t) we may proceed in a similar

3

Auj(t)
manner. Setting A, = o in (l1.1) and letting ét(\) = E[e ]

2
we find that

t
A
§,(0) =1 - F(t) +J'o 61 + (e - o o, () dF(s).

3

Proceedins; as before we find that

EHj(t) = ulrer(t)
and

2

t
2
EMJ(t) = Zulaj Io EMj(t - 8)n(s) ds + uzaj

N(t) + EHJ(t)

t
- 2u§a§ jo N(t - 8)n(s) ds + uzazN(t) + » o

j N(t)-

J

In Lemma 2.1 get b(t) = 1, M(t) = N(t), and a(s) = n(s).
Then

t 22
I N(t - s)n(s) ds = LE 4 2vIc + o(e).
(o]

- L et - e e s
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Thus
2 Z{thz
1%35L72

EM?(t) = 2u + 2V1t1 + “2"§Yt + war .Yt + o(t),

j

since

‘ 2 2

(Enj(:)jz = ufaiu(:)z = uiagffn(c) - vt 4 2veN(E) - vel + v e
22 2222

ZulanI + ulajv t™ + o(l).

Thus

22

2] 2
(2.14) Var gj(t) = {‘JlanI + uzajy + pajy1t + o(t).

We may now easily establish the law of large numbers for Yj(t)

(t) = 0(t), and thus

and Mj(t). Indeed, by (2.13) we know that Var Yj
Y. (t) Var Y (t)
N LRI DAL L
t 71 eztz t

Likewise (2.14) shows that
M.(t) Var u,(t)
] !—i—'—-WO">€ S.——-J—-ao(.]_') .
t 173 e2:2 t

This completes the proof of Theorem 1.
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3. PROOF OF THEOREM 2

Computing

2
[ 3 ét
ST'ST')\ s
12 .l—)2—0

we find that

t

(3.1)  Cov (My(E), ¥ (£)) = 'YO T gy (PL(8) = P3(8)) (Py(5) + Py(s))

+ upl(S) + u(pl(s) + pz(S)) EYj(t - 8)
+ “1(91(5) = 93(s))EMj(t - s)in(s) ds.

Consider the third term on the right, Since P, + p2 = a,, this teym

3

becomes

t
wary I EY,(t - 8)n(s) ds.

o

In Lemma 2.1 set b(t) = 1, a(s) = n(s), and M(t) = EY ,(t). Then in view

A
of Eq. (1.3)

2 2
t Y u,m.t
(3.2) =7 Y EYj(t - 8) n(s) ds - -——%—1——}
[+]
= q VuerJ + 0.1t o uzvﬂ It + o(t).
im A yi)
. r
Similarly, in the fourth term on the right, pl(s) + pj(s) = 3 yiPij(s),
=]

and thus this term is
t

By ‘. PQJ(B)EM

(t - 8)n(s) ds.
L j

In Lemma 2,1 set b(t) = Paj(t)' EMj(t) = M(t),and a(t) = n(t). Then

in view of Eq. (1.5) we see that
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2 2 2
t o Ty a,t
(3.3) I Y P .(s)EM (t - s)n(sg) ds - M i
1;” al j 2
= 2y" uZIt + o(t)
M '
Now
2 22
EY (t)EM (t) -~ t o I,
j ) j() BLY U
=u2fy Yv3 +m 1 + 2YﬂaIt+o(t)
173 i M5 .

Thus from (3.1) - (3.3) we see that
2
Cov (Yj(t), Mj(t) = [ZulanﬂjI + (u(z) + ul)ajﬂjYTt + o(t).

This establishes Theorem 2,
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